Math 10A with Professor Stankova
Quiz 9; Wednesday, 10/25/2017
Section \#106; Time: 10 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE The general form of the solution to $\frac{d y}{d x}=y$ is $y=e^{x}+C$.

Solution: It is $C e^{x}$, not $e^{x}+C$.
2. TRUE False In order to show that the integral $0 \leq \int_{1}^{\infty} \frac{1}{f(x)} d x$ converges, it suffices to find a function $g(x)$ such that $f(x) \geq g(x)$ on $[1, \infty)$ and show that $\int_{1}^{\infty} \frac{1}{g(x)} d x$ converges.

Solution: This is true because if $f(x) \geq g(x)$, then $\frac{1}{f(x)} \leq \frac{1}{g(x)}$.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (4 points) Suppose that $\frac{d y}{d x}=\sin (x) \csc (y)$. Find a solution such that $y(0)=\pi$

Solution: We move things to different sides and get that

$$
\frac{d y}{\csc (y)}=\sin (y) d y=\sin (x) d x
$$

Taking the integral of both sides gives

$$
-\cos (y)=-\cos (x)+C
$$

Now plugging in $y(0)=\pi$, we have that

$$
1=-\cos (\pi)=-\cos (0)+C=-1+C
$$

and so $C=2$. Therefore, the equation is

$$
\cos (y)=\cos (x)-2
$$

(b) (3 points) Integrate $\int_{0}^{\infty} \frac{2 x}{\left(1+x^{2}\right)^{2}} d x$.

Solution: We have that

$$
\int_{0}^{\infty} \frac{2 x}{\left(1+x^{2}\right)^{2}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{2 x}{\left(1+x^{2}\right)^{2}} d x=\left.\lim _{t \rightarrow \infty} \frac{-1}{1+x^{2}}\right|_{0} ^{t}=\lim _{t \rightarrow \infty} \frac{-1}{1+t^{2}}-\frac{-1}{1+0^{2}}=0-(-1)=1
$$

(c) (3 points) Does the integral $\int_{0}^{\infty} \frac{2 x \sin ^{2}(x)}{\left(1+x^{2}\right)^{2}+e^{-x}} d x$ converge? Hint: Use the previous part.

Solution: We know that $\sin ^{2}(x) \leq 1$ and $\left(1+x^{2}\right)^{2}+e^{-x} \geq\left(1+x^{2}\right)^{2}$ so combining these two gives $\frac{2 x \sin ^{2}(x)}{\left(1+x^{2}\right)^{2}+e^{-x}} \leq \frac{2 x}{\left(1+x^{2}\right)^{2}}$. So, we have that

$$
0 \leq \int_{0}^{\infty} \frac{2 x \sin ^{2}(x)}{\left(1+x^{2}\right)^{2}+e^{-x}} d x \leq \int_{0}^{\infty} \frac{2 x}{\left(1+x^{2}\right)^{2}} d x=1
$$

and so the integral converges.

