Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True **FALSE** The general form of the solution to $\frac{dy}{dx} = y$ is $y = e^x + C$.

Solution: It is Ce^x , not $e^x + C$.

2. **TRUE** False In order to show that the integral $0 \le \int_1^\infty \frac{1}{f(x)} dx$ converges, it suffices to find a function g(x) such that $f(x) \ge g(x)$ on $[1, \infty)$ and show that $\int_1^\infty \frac{1}{g(x)} dx$ converges.

Solution: This is true because if $f(x) \ge g(x)$, then $\frac{1}{f(x)} \le \frac{1}{g(x)}$.

Show your work and justify your answers. Please circle or box your final answer.

3. (10 points) (a) (4 points) Suppose that $\frac{dy}{dx} = \sin(x)\csc(y)$. Find a solution such that $y(0) = \pi$

Solution: We move things to different sides and get that

$$\frac{dy}{\csc(y)} = \sin(y)dy = \sin(x)dx.$$

Taking the integral of both sides gives

$$-\cos(y) = -\cos(x) + C.$$

Now plugging in $y(0) = \pi$, we have that

$$1 = -\cos(\pi) = -\cos(0) + C = -1 + C$$

and so C=2. Therefore, the equation is

$$\cos(y) = \cos(x) - 2.$$

(b) (3 points) Integrate $\int_0^\infty \frac{2x}{(1+x^2)^2} dx$.

Solution: We have that

$$\int_0^\infty \frac{2x}{(1+x^2)^2} dx = \lim_{t \to \infty} \int_0^t \frac{2x}{(1+x^2)^2} dx = \lim_{t \to \infty} \frac{-1}{1+x^2} \Big|_0^t = \lim_{t \to \infty} \frac{-1}{1+t^2} - \frac{-1}{1+0^2} = 0 - (-1) = 1.$$

(c) (3 points) Does the integral $\int_0^\infty \frac{2x\sin^2(x)}{(1+x^2)^2+e^{-x}}dx$ converge? Hint: Use the previous part.

Solution: We know that $\sin^2(x) \le 1$ and $(1+x^2)^2 + e^{-x} \ge (1+x^2)^2$ so combining these two gives $\frac{2x\sin^2(x)}{(1+x^2)^2 + e^{-x}} \le \frac{2x}{(1+x^2)^2}$. So, we have that

$$0 \le \int_0^\infty \frac{2x \sin^2(x)}{(1+x^2)^2 + e^{-x}} dx \le \int_0^\infty \frac{2x}{(1+x^2)^2} dx = 1,$$

and so the integral converges.